TITLE Trends to 1982 in Industrial Support of Basic Research. Special Report.
INSTITUTION National Science Foundation, Washington, D.C. Div. of Science Resources Studies.
REPORT NO
NSF-8.3-302
PUB DATE
NOTE
AVAILABLE FROM

PUB TYPE
83
29p.
Superintendent of Documents, U.S. Government Printing Office, Washington, DC. 20402 (Stock Number 038-000-0028-6, $\$ 3.50$ per copy).

EDRS PRICE DESCRIPTORS

IDENTIFIERS

ABSTRACT

This report analyzes recent trends in company-funded basic research support and incorporates findings from a special mail survey and personal interviews with research and development (R\&D) officials of 54 firms. The report also provides insight into industry/university cooperative basic research efforts. Following an introduction, the report is organized into four sections. The first section precents highlights of major findings. The second section discusses trends in industrial basic research, focusing on trends by individual industry, factors responsible for increasing expenditures

 federal funding. Industrial funding of basic research át universities and colleges is discusted if the third section. A historical perspective (focusing on trends in industrial expenditures for basic research, and basic research expenditures by industry and by field of science and engineering) and four statistical tables are included in the appendices provided in the fourth section. Among the findings reported are those indicating increased company support of basic research performed at universities/colleges due to an apparent shift of academic research goals to areas of greater interest to industry and development.s in biotechnology research requiring skills not available in industrial laboratories. (JN)

[^0] position or, policy.

trends to 1982 in industrial support of basic research

related publications

NSF No. Price

NSF No. 'Price
Science Resources Studies Highlights
R\&DFunds
"Significant Increase Expected in Industrial R\&D Performance of Federal R\&D Programs in FY 1983" 82-329\vdots
\vdots
\ldots"Gruwth in Federal Balic ResearchSuppor: in 1980-83 Moves at SlowerRate than in Previous Four Years"i
i
$82-325$$\cdots$
"Companies Plan R\&D ExpenditureIncreases for 1983: GrowthRate Down" 82-324"Defense Leads R\&D Growth in FY1983-Energy and Natural Resourcesand Environment Fall Sharply"82-322"National R\&D Expenditures Expectedto Reach 58.5 Billion in 1983"82-311"Academic R\&D Expenditures Increased4\% in Real Terms Between FY 1979and FY 1980"82-309"i980 Federal Obligations to Univer-sities and Colleges Rose Slightlyin Constant Dollars"82-301
"Industrial R\&D Experditures in
1980 Show Real Growth for Fifth
Consectuive Year" 81-331

Detailed Statistical Tables

R\&D Funds
Federal Funds for Research and Devel- opment, Fiscal Years 1981, 1982, and 1983, Volume XXXI 82-326
Research and Developnic:.: in Industry, 1980 82-317
Academic Science: R\&D Funds, FiscalYear 1980$82-300$
Research and Development in Industry, 1979 81-324
Reports
R\&D Funds
1990 R\&D Funding Projections 82-315 $\$ 3.50$
Federal Support to Universities, Colleges, and Selected Nonprofit Institutions, Fiscal Year 1980 82-308
Research and Dovolonmont in Industry, 1979 82-304$\$ 6.50$
Gomposite
National Patterns of Science and Technology Resources, 1982 82-319 ments US Government Printing Office. Washington. D.C. 20402. Where no price is listed. single copies may be obtaned gratis from the National Science Foundation, Washington. D.C. 20550.

For sale by the Superintindent of Documents, U.S. Government Printing Office
Washington, D.C. 20402 - Price $\$ 3.50$ per copy Stock Number 038-000-0n28.6

foreword

There is widespread belief that information emanating from basic research is of major importance to the industrial innovation process. Although it is difficult to trace precisely the chain of events and to measure the linkages throughout the entire innovation process, there is growing acceptance that investment in basic research eventually yields a profitable return. This report analyzes recent trends in c, mpany-funded basic research support and incorporates the findings from a special mail survey and personal interviews with R\&D officials of 54 firms. The report also provides insight into another area of growing interestindustry/university cooperative basic researc̣h efforts.

Charles E. Falk, Director

- Division_of Science Resources Studies

Directorate for Scientific,
Technological, and.
International Affairs

acknowledgments

This report was prepared in the Division of Science Resources Studies by Melissa Pollak and Margaret R. Grucza, under the direction of Thomas J. Hogàn, Study Director, Industry Studies Group. William L. Stewart, Head, R\&D Economic Studies Section, provided general guidance and direction.

The contributions of the members of the Industrial Panel on Science and Technology, both through letters and interviews, are gratefully acknowledged.

contents

Page
Introduction 1
Highlights 2
Trends In Industrial Basic Rèsearch 3
By Individual-Industry 4
Factors Responsible for Increasing Expenditures During 1975-81 4
Basic Research Spending in 1982 4
Factors Responsible for Declining Expenditures During 1982 5
Impact of a Decline in Federal Funding 5
Industrial Funding of Basic Research at
Universities and Colleges 7
Appendixes:
A. Historical Perspective 11
B. Statistical Tables 15
C. Reproduction of Covering Letter 23

introduction

To obtain information on possible significant changes in industry's funding of basic research in 1981 and 1982, a query was sent in December 1981 to selected members of NSF's Industrial Panel on Science and Technology, requesting comments regarding industrial support of basic research, particularly within the context of the panelist's own industries. (See appendix C for a copy of this letter.) The questions focused on real changes in industrial support of basic research during 1981 - and 1982. Approximately 20 percent of the respondents expressed opinions on overall industrial spending on basic research; the remaining R\&D officials restricted their comments to basic research funding within their own industries or companies during 1981 and/or 1982. The objective of the survey was to obtain comments from knowledgable individuals representing a cross section of industries. It is believed that this was accomplished. Responses were received $\mathrm{f}_{1} \circ \mathrm{~m} 44$ panelists and additional information was obtained durirg regularly scheduled site visits with company K\&D officials. Although the findings should not be considered statistically valid, responses were received from firms in all major basic research-performing industries. These firms accounted for approximately 50 percent of total company basic resarch expenditures in 1981. Nonrespondents were primarily from medium-sized and smaller firms in industries not heavily dependent on basic resparch.

highlights

Abstract

The statistical data presented in this report were collected for the National Science Foundation (NSF) by the Bureau of the Census in the Annual Survey of Industrial Research and Development. Additional information, obtained between December, 1981, and March 1982, is based on 44 mail responses to an NSF inquiry to its Industrial Panel on Science and Technology and on ten interviews with R\&D officials. The panelists and the other respondents represent companies in all the major basic research performing industries. These firms accounted for approximately 50 percent of all company-s financed expenditures on basic research in 1981. The comments discussed in this report, unless otherwise indicated, are solely those of the respondents.

- In 1981, companies spent $\$ 1.3$ billion of their own funds on basic research projects, approximately 4 percent of total industryfinanced expenditures on research and development. There has been a continuous upward trend in industry's investment in basic research since 1975, the average annual rate of growth was 6.7 percent in constant dollars between 1975 and 1981. This rate of growth was about the same as the $6.5-\mathrm{p}$ reent increase in industrial funds spent on applied research and development during the same period.
- Information received from R\&D officials indicated that the upward trend in basic research funding would slow cunsiderably in 1982, increasing less than 3 percent in real terms. Nearly one-half the respondents reported that their firms' 1982 expenditures were expected to remain even with the level spent the previous year, when measured in constant dollars. O.ly firms in the chemicals industry were expected to increase then basic research outlays, real increases ranging from 5 percent to 10 pe.cent were reported. R\&D officials representing the remaining firms stated that their companies' investment in fundamental research activities would decline in real terms. The decreases ranged from 1 percent to 5 percent.
- Reasons cited by the respondents for the decline or lack of real growth in overall basic research expenditures during 1982 include expectations of decreased earnings and the need to channel scarce research dollars into shorter term profit-improvement programs, and high inflation and interest rates that create an unfavorable climate for capital formation.
- The two industries which lead in company-financed basic research expenditures are chemicals and electrical equipment. In 1981, $\$ 460$ million was spent by firms in the chemicals industry, while companies in the electrical equipment industry spent $\$ 230$ million. The average annual real rate of growth in expenditures on fundamental research projects was 14 percent in the chemicals industry between 1979 and 1981, the electrical equipment industry, in contrast, exhit'ted an average annual real decreases of 2 percent during the same period.
- Respondents from firms in the chemicals industry attribute this high rate of growth and the increase expected in 1982 to the exploration of recent biotechnology breakthroughs, particularly those related to genetic engineering. These officials also reported that firms in the chemicals industr. have been expanding their basic research programs as they diversify into other areas-new to them but still classified within the chemicals industry-such as pharmaceuticals, agricultural chemicals, and energy feedstorks.
- The industries which rank third and fourth in companyfinanced expenditures on basic research are the petroleum and machinery industries. Both registered sizable increases, each averaging over 25 percent in constant dollars, in funding basic research between 1979 and 1981. Companies in the petroleum industry reported spending $\$ 133$ million in 1981 on such basic research activities as improving fuel and engine efficiency and, discovering newt technolugies relating to coal gasification, enhanced reco ery, and solar energy. The machinery industry which spent $\$ 126$ million in 1981 is financing fundamental research necessary to explore areas such as computer-aided design and computer-aided manufacturing technologies.
- Eighty-five percent of the responding firms fund basic research undertaken by universities and colleges. Two-thirds of that group either increased their support during 1981 or planned to increase it in 1982. Expenditures to support academic basic refearch, however, comprise less than 1 percent of the total company R\&D budgets of almost all the reporting companies.
- Reasons given for increased company support of basic research performed at universities and colleges include an apparent shift of academic research guals to areas of greater interest to industry, new developments in biotechnology research requiring skills not available in industrial laboratories; and a recognition by many firms that a byproduct of funding academic research is the training of qualified scientists and engineers in fields which are important to industry.

trends in industrial basic research

Companies expenditures of their own funds on basic research, measured in constant dollars, fell steadily throughout the late sixties and early seventies at an average annual rate of 2.8 percent between 1966 and 1975. This trend was reversed after 1975 as firms began to expand their in-house basic research programs. From 1975 through 1981, investment in basic research grew 6.7 percent per year in real terms, reaching a level of $\$ 1.3$ billion in 1981. Only 4 percent of the total industry budget for research and development is used to su pport basic research projects; the remainder finances activities classified as applied research or development. Between 1975 and 1981 their funding levels grew at a pace about the same as that for basic research-6.5 percent after adjustment for inflation (chart 1).

Industry also receives funding from Federal agencies to perform in-house fundamental research activities. In 1981, the amount was $\$ 330$ million. This report, however. addresses only that portign of industrial basic research financed inter nally. Appendix A contains more detailed background information on industry's performance of básic research.

by individual industry

The four industres leading in companyfinanced basic research expenditures in descending order are chemicals (460 million in 1981); electrical equipment ($\$ 230$ million): petroleum refining ($\$ 133$ million); and machinery (126 million). Between 1979 and 1981, the petroleum-and machinery (which includes companies manufacturing office, computing, and accounting machines) and petroleum industries had the highest average annual growth rates in funds spent on fundamental research activities-over 25 percent in constant dollars for both industries.

Firms in the chemicals industry, however, accounted. for nearly two-fiftins the total increase in company funding uccuring between 1979 and 1981. This industry had an average annual growth rate of 14 percent during that period. Of the four major basic research-perforn. ng industries, only the electrical equipment industry showed a lower growth rate than the all-industry average growth rate by declining 2 percent in real terms between 1979 and 1981.

factors

responsible for increasing expenditures during 1975-81

Diversification, the birth of new indus-: tries, competition, and efforts to raise productivity were identified as the major factors spur ring companies to increase thar expenditures on basic research.

Corporate R\&D officials from chemFails companies indicated that their firms are currently diversifying, most entering new product areas such as agricultural chemicals or drugs and niedicines. The establishment of new product lines either through diversification and/or research innovation requires a high initial investment in basic research.

Almost every chemicals company respondent reported that basic research spending was increasing at an accelerating rate as their, firms explored recent breakthroughs in biology and biochemistry, Ficluding genetic engineering. These areas are expected to yield lucrative commercial opportunities in the form of new products and processes embodying advances in biotechnology. In addition to the various segments of the chemicals industry, other areas including energy, forest products, and mining, will be affected by discoveries made through genetic research.

Intensifying domestic and foreign compettion have caused an increase in the funding of basic research in some industries. (It should be noted, however, that these markei forces have had an even greater impact on the performance of applied research and development.) This is particularly evident in the computer portion of the machinery industry and in the electronic components and communication equipment segments of the electrical equipment industry where basic research on computer-aided design, com-puter-aided manufacturing. information storage, and microprocessor tech nology is being performed. The emphasis on basic research in the semiconductor segment of the electrical equipment industry is continuing despite a recent recession in that industry. Fundamental research is deemed essentiai by these companies to ensure their future viability in a rapidly changing, high-iechnology industry.
Respondents from conipanies manuf. cturing other types of electrical equipm nt, however, reported cash flow probloms attributable to poor sales. Ironically, foreign competition was blamed for that reduced income. Because of these financial constraints (which will be discussed in greater detail below), total companyfinanced expenditures on fundamental research activities by electrical equipment firms did not grow as rapidly as those made by companies in the other three major basic research performing industries. R\&D officials from the electrical equipment firms did report, however, that their companies' had been channeling scarce $R \& D$ resources into applied research and development at a faster rate than basic research: as they sought to maximize the application of new technology by adding artificial intelligence capability and programmability to a continually widening range of products and processes.

Several respondents, including represenlatives from the food ard petroleum industries, mentioned the importance of basic research in their efforts to raise productivity. Officials from petroleum companies reported thät their basic research projects were aimed at improving the efficiency of engines and oil and gas production, utilizing lower quality feedstocks effectively, reducing operating cösts, and discovering more economical methods of developing and producing alternative energy sources.

Economists have been investigating the impact of basic research on productivity. One study of 20 manufacturing industries indicates that a direct relationship exists between the amount of basic research undertaken by an industry or firm and its rate of increase in rroductivity. This finding provides evidence that, in general, the discoveries made through basic research are made operational exclusively by the industries and firms that undertook the work, or that successful basic research tends to complement and thus expedite applied R\&D projects aimed at improving productivity. ${ }^{\text {. }}$

basic research spending in 1982

Aggregated information irom the R\&D officials indicates that in 1982 industrial expencitures ce basic research will show ony a modest real gain, probably less than 3 percent. Nearly half the R\&D officials willing to provide information on their own companies' expenditures for 198, reported that internal funding of funda-mental-research activities would just keep pace with inflation; thus, there would be nu change in their real levels of effort from 1981 to 1982. Responses from the remaining $R \& D$ officials indicated that only compames in the chemicals industry would expand their basic research programs in 1982-real increases of 5 percent to 10 percent were anticupated. Seven respondents reported real-dullar decreases, ranging from 1 percent to 5 percent. Officials

[^1]from many of the firmo predicting either a reluction or no change in their constantdollar expenditures between 1981 and 1982 stressed, however, that even diuring the current period of economic uncertainty, fundaniental research programs were vital to their companies' survival and future prosperity. Therefore, their companies were committed to maintaining strong basic research programs.

factors responșible for declining expenditures during 1982

Almost half the respondents cited the recession for the curtailment of, failure to increase, or slowed growth of expenditures for basic research progranis in 1982. In addition, high interest rates and inflation have deterred the performance of basic research by making it more expensive to purchase the capital equipment needed to conduct fundanental research and to obtain the capital necessary to incorporate research results into oper dons.

Further, the company R\&D officials reported thai decreased earnings from poor sales were creating severecăsh-flow problems. This has linited the amount of discretionary funding available for basic research. Because it often requires a longterm commitment of financial resources and involves a high degree of risk, basic research is often one of the first areas to be cut back whenever stringent financial constraints must be imposed. In ädition, any potential benefits from basic research usually are not readily apparent; profits from this type of project may not be realized until far in the future.

All of these factors combined have necessitated the postponement of many basic research pfojects until profitability is restored. is stated in a recent article,
...R\&D is expensive. As technology has advanced, the equipment and brampower needed in research have beciome increasingly sophisticated, forcing up R\&D costs faster than general inflation R\&D is also risky, ouly a small minority of
innurations attain commertal sulcess. Even the suctesses reward their creators only in the distant future-ten years or longer for most significant developments. Potential profits must be huge to justify the risks and years of waiting, especially when towering interest rates and inflaHoll require businessinen to deeply distount future earnings. ${ }^{2}$
The corporate R\&D officials mentioned specific circumstances that in 1982 were having ạn adverse impact on the performance of basic research:'
(1) Steel manufacturers were allocating financial resources to support plant and equipment modexnization proagrams, which have been given a higher priority than basic research.

- It is anticipated that once these efforts have been completed, the firms will be able to compete more effectively with foreign manufacturers.
(2) Producers of equipment used in electric power generation were expenencing serious cash-flow problems and therefore curtailed their basic research programs. Demand for their products has decreased because of the failure of electric utility companiss to obtain rate increases and, mor : important, to decreased energy use. Sales of nuclear additions to electric power generating systems have fallen sharply. With fewer sales,-contpanies do not have the financial resources necessary to invest in more basic rne arch.
(3) One-half the respondents from companies in the aircraft and missiles industry said that their firms were directing a greater portion of their researsh resources to ward developinent programs to ensure short-term survival and growth. Anticipating increases in the procurement of new defense systems, firms in the indus.try expect to be able to maintain a constant level of effort in basic research to meet future needs. All the company,officials from aerospace firms noted that the resources needed to finance exploratory research were too great to warrant the undertaking of basic research unless such an investment could be leveraged by government R\&D contracts.

[^2]Interviews with company R\&D officials revented that there is a trend toward longer term R\&D projects; however, these projects may not necessarily be considered hasic research. The increasingly complex nature of today's state-of-the-art technology has lengthened the time horizon needed to perform applied re,earch or to develop a specific product or process. Officials in several industries, including the aerospace, discussed this aspect of R\&D activity, explaining that a 10 -year commitment is necessary even after the fundamental research has been compieted.

impact of a decline in. federal funding

With ine exception of those in the aerospace industry, which has relied heavily on Federal funding for basic research activities, nearly all the corporate officials stated that the anticipated decline in-Federal support of basic research would have little or no effeet on their firms' funding of basic research. Several of these respondents qualified their answers, reporting that although there would be no short-term reaction, it was too soon to know if thise would be long-range effects of such a spending reduction. In addition, respondents pointed out that the specifics of the Federal cuts were still unknown at the time they received the letter. Therefore, they were currently unable to determine if their companies would be affected by a reduction in Federal support of basic research. For example, it was noted that it had not yet been determined exactly which areas in basic energy research would be most affected. ${ }^{3}$

In the aerospace industry, a decrease in NASA technology base programs is

[^3]already having an adverse impact on the performance of babs research. Compiny officials from one half the firms in this industry pointed out that they had re: dued their funding of fundamental: researh athvittes, and willi be forced to make further cutbachs, since internal findncing in this industry parallels the pattern of Federal support, rather than
the contrary, is is offen assumed.
Several officials focused their remnarks on - the impact of possible reductions in Fed. eral finding of basie researchic at academic institutions. The respondents mentioned that these antiipated cuibachs made them more, heeniy awatre of the overall problems in unneryitics and sulleges. Although firms are plaing greater emplacisis on supporting
dcademic basic reseárch (discussed in more . detailin the next section), the current eco: nomic climate is precluding them from. maxing larger fịnancial cummitments. Overall, the curpurate officials do ${ }^{6}$ not expect the private sector to provide the support necessary to compensate for a . decline in federally funded basic research performed at academic institutions.

industrial furiding of basic research at universities and colleges

In recent year, numerous changes have occurred in both the level of activity and the types of cooperative research programs undertaken by industry and universities. An examination of the industrial sector an a source of funds for basii research revealn that industry provided 15 percent of the total amount of funds expended for fundamental research activities in the United States in 1981 (chart 2): ${ }^{4}$ Of these funds, a total of $\$ 1.3$ billion, or over 80 percent, was for basic research projects undertaken in-house (chart 3). Funding by firms of fundamental research undertaken at universities and colleges totaled $\$ 164$ million, or about'4 percent of total expenditures on basic research made by academic institutions in 1981 (chart 4). This was 10 percent of total industrial funding of bask resears but amounted to less than 1 percent of all companyperformed R\&D actavites during 1981 (chart 5).

Forty-seven of the R\&D officials responding to the letter or interviewed answered questions pertaining to industrial support of basic research performed by universities and colleges. All but six replied that their companies were as of January 1982, financing this type of activity. Over

[^4]
haif of these affirmative responses estimated their level of funding to be either 1 percent or less of their companies' total R\&D budgets. Respondents from seven - firms reported expenditures exceeding 1 percent, with one official estimuling support at 4 percent, the highest portion mentioned.

Two-thirds of all the respondents (including some who said that their firms did not finance any ongoing basic research activities at academic institutions) men-

tioned that their companies had plans to increase expenditures in this area or that they expected their industries to increase expenditures in the near future. Two company R'\&D officials reported that their firms would probably decrease funding (no one mentioned a decline in a specific industry's expenditures), and six responded that their firms planned no change in their current level of financial support. Several respundents stated that funding of basic research periormed by universities.

and colleges, like other budgetary items, often depended on the firm's current financial position and is adversely affected if the economic climate is unfavorable.

The most frequently cited reason for the rise in cullaburative basic research programs is the heightened interest and
couperation being shown by aniversity and college researchers. In the past, researchers were reluctant to participate with companies in research projects, however, firms are currently detectung a change in this attitude. Many academic institutions are experiencing or anticipating a curtailment in funding from traditional government sources and are thus seeking stable, alternative sources of support. Consequently, they are shifting the focus of some of their research ditivities to areas of greater interest to industry in order to attract this potential source of funding.

One-fourih of the company R\&D officials said they regarded the academic community as a leading source of new scientufic adeas, which is particularly important when exploring new technical areas in which their firms do not have active programs or adequate staffing. Funding high-risk ventures outside the firm is of ten more cost-effective than incurring startup costs, including the cost of additional technical persomel.

Forty percent of the R\&D offictals from chemicals companies said that recent brotechnology break throughs in genetic engineering have necessitated their tapping academic expertise to obtain skills currently unavalable in their am's laboratories.

One of the must common arrangements to fund basic research at universities is the use of consulting contracts with individual university researchers. Industry R\&D scientists and engineers are often familiar with research being undertaken by their former colleagues at academic institutoons, and they also interact with university faculty at conferences. Thus, a one-to-one relationship is established through an infurmal network, and the company offluals then know whom to contact when a spenfic area needs to be studied.

In addition, R\&D officials interviewed stated that they were receiving a larger number of unsolated proposals from university researchers. Somes of these have resulted in small contracts for basic research. Some firms have chosen to fund these projects on an ad hoc basis, while others have set up more formal grants programs.

There are also a number of multifirm cooperative research programs, including some that involve funding basic research at universities. NSF has sponsored several of these collaborative ventures. In addi-
tion, firms in a number of industries have established organizations to serve as catalysts for co perative research activities. Until rècently, companies were inhibited from forming such associations by the potential threat of antitrust action. In 1980, the Justice Department delineated its pusition un such couperative research ventures. They do nut violate antitrusts laws if all firms that want to participate in a venture are permitted to do so and if only long-term basic research is jointly financed and performed. Two of these industrial groups are the Council for Chemical Research and the Semiconductor Research Cooperative.

The Council for Chemical Research is a cooperative organization consisting of the largest companies in the chemicals industry and major universities Two of the principal goals of the Council are to increase the amount of bacic research funding that the chemical industry provides to academic institutions and to improve graduate education programs.

The Semicunductor Research Cooperative, initiated by the Semiconductor Industry Association, is an organization made up of the largest $U S$ computer manufacturers and their semiconductor suppliers. The members will jointly provide financing, furnish equipment, and lend technical R\&D personnel to universities and research centers to conduct research on projects that ordinarily would be too complex and/ or expensive for an individual company or academic institution to undertake. Areas in which basic research will be performed include very large-scale integration, silicon lithography, and computer-aided design. In addition, it is anticipated that this increased flow of resources into university laboratories conducting basic research will lead to a greater supply of qualified scientists and engineers available to work in industry.

State governments, expressing interest in providing financial support, are facilitating the establishment of research institutes to house industry/university collaborative projects. In one plan, the State would receive a portion of any royalties from patents obtained through the research and, more important, the State would benefit from the jobs created by participating companies and by firms attracted to the area. ${ }^{5}$

[^5]
appendixes

a. historical perspective
b. statistical tables
c. reproduction of covering letter

historical perspective

trends in industrial expenditures for basic research

The National Science Foundations survey of industrial researth and development unen the following definituon of batic rebedrah orminal invertagatwon tor the adramument ot mentiti knowledge that do not have specific commerciall objectives, although they may be in a field or feelds of present or potential interest to companies.

The contribution of the industrial sector to both the national level of expenditures for, and the actual performance of basic research fell steadily during the sixties from approximately 30 percent in 1960 to around 16 percent in 1971. It remained at approximately that level through 1981.' A combination of several factors caused the proportion of total basic research activities accounted for by companies to diminish during the sixties. The university and college sector accounted for 36 percent of total expenditures for the performance of basic research in 1960. Educational institutions obtain most of their funding-historically around 70 percentfrom government agencies. Federal fund-

[^6]ang of bask research projects performed at universities and colleges grew at a signifuantly fastet pace than industrial expenditures throughout the sixties. Thus,
by 1970 the universities' and colleges' share rose to 51 percent of U.S. basic research activities, and the industriai share fell to (and remains at) its current level (chart B-1).

In cuntrast te this e'vansion in Federal support for busic rencarch undertahen at addema insthutuns. geocinment finana ing provided tucompanies for fundamental research. medared in cunstant dullars. déreased during tha same petiod. Between 1902 and 19\%3. Federal suppurt of industrial basu reseanth ativities fell at an aver der annual rate of approximately 4.3 percont, in real terms, largely a result of curtailments in defense and space programs (chari B-2).

Of the total amount of funding that the government supplies to industry to undertake R\&D projects- $\$ 105$ billion in 1981-only 2 percent goes into basic research. while 14 percent is used for applied research and 84 percent for development. Although companies provided only a slightly higher proportion of their own funds to basic research activities (4 persentl, the absolute dollar amount was four times that of Federal support for industral basic research. Applied research
cunsumed 23 percent and development programs received $; 3$ percent of tutal priwite investment- $\$ 35.4$ billion-in industral R\&D ativittes in 1981 whart $B-3$).

Tha total amount (inciuding Federal funds) spent by companies to perform bask teseare hin 1981 was $\$ 1.0$ billion. When meabured in constant dollars, however. this level was only 3 perient above that repurted in 1900. Real perform ance of industrial basic research began to fall after 1900 and rontinued to decline through 1075 at an average annual rate of 3.7 percent. A study funded by NSF^{2} revealed several facturs contributing to this do win ward trend:

[^7]Chart B.2. Federal funding of basic research performed by industry and by universitlesfolfeges in constont 1072 dollars

(1) One of the results of an evolution in R\&D management that occurred during this periou was the imposition of mure stringent contruls in the innovation process by mandating that R\&D projects have clearly defined objectives. Mary risky, long-term ventures failed to pass this scrutiny and thus were discarded or postponed in favor of more goal-ariented projects.
(2) Government support decreased for basic research performed by private industry, and government regulation increased. Complying

with the latter drained the amount of funds available for basii research. ${ }^{3}$
(3) Applied research and develop/ ment recsived heavier ernphasis. (This is discussed in more detail below.)
(4) Growing pressure on profits necessitated the investméntion lowrisk, short-term projects likely to yield immediate payoffs.
This trend was reversed between 1975 and 1981, when industrial outlays for basic research projects increased nearly 50 percent in real terms. Renewed optimism about the long-range potential profitability from i.vvesting in basic research and the growing threat of competition from abroad in technology-intensive industries were factors instrumental in triggering this upsurge. ${ }^{*}$

Despite the sizable increase in basic research during the second half of the seventies, until the eighties this growth was insufficient to arrest the gradual decline in the proportion of total company R\&D expenditures devoted to basic research. The ratio fell from approximately 6.7 percent in 1960 to 37 percent in 1974 . tell tw $3+$ perient in 1980 and then rome to 37 percent in 1081 (6hart B-4)

The demphame in biace reatarch relative th the wher two tipes of R\&D attwity between 1900 and 1980 oncurred as industry "began to stress short-term returns from its $R \& D$ investment. Given the risk associated with research and development and increasing financial pressures, industry had been concentrating its resources more intensively on applied research and development because these activities lead to more

[^8]pipid commervialization of specific produts or improved processes. In addition, companies had been taking advantage of a substantial accumulation of scientific knowledge from basic research performed in earlier years that had not been fully exploited. A wide range of assorted products based on those technological advances could be successfully developed and marketed. There was no incentive to perform more basic research because many companies did not have sufficient resources to market products based on technology already in existence so that any further advances emerging from additional research would have to be shelved. ${ }^{5}$

[^9]Thus, during the sixties and most of the seventies basic research may have been relegated to a less important status within the entire innovation process.
> basic research expenditures by industry and by field of science and engineering

Industrial basic research is an enormously concentrated activity-only a very small number of firms perform most of the basic research undertaken by industry in the United States. In 1981, just 10 companies accounted for nearly half of all funds (in-

cluding Federal) expended by industry on bask researdi dellvites.

Nearly two durds of all spending on bask research from companies unn funds ucurred in four industries The diemicals madustry historically has led in the performalle of basa research, in 1981, it spent nearly one-third, or $\$ 539$ million, of all the all industry tuld. The eleatrad equap ment, petroleum refining, and machanery madustres decounted for 17 percent. 8 percent, and s percent, respectively, of total
industral expenditures for basic research.
The chemicals industry led in companyfinanced basic research, allocating $\$ 458$ million, or 9 percent of its $R \& D$ budget, to basie research. The electrual equipment mdustry was second, spending $\$ 232$ million, or 1 percent of its own R\&D funds. on basic research in 1981.

Companes in the chemuals industry also recelved the highest allotment of Federal funds provided for basic research actuities- $\$ 71$ million, or 22 percent of
the tutal ame. of funds furnished by government agencies for industrial basic research in 1981 (chart B-5).

Almust half- $\$ 750$ million-of total industrial bask research expenditures in 1981 was in the physical sciences. Of those funds, 72 percent was spent on projects classified within the field of chemistry. Engineering and the life sciences accounted for anuther 25 percent and 15 persent, respectively, of total industrial basic research expenditures.

statistical tables

Page
B-1. Funds for basic research, applied research, and development performance: 1953-81 17
B-2. Funds for basic research, applied research, and development by industry and selected' company size-groups: 1981 18
B-3. Funds for basic research, applied research, and development, by industry, source of funds, and selected company size-groups: 1981 19
B-4. Funds for basic research by industry añd size of company: 1957-58, 1963-77, and 1981 20

Table B-1. Funds for basic research, applied research, and development performance: 195281
[Dollarś in millions]

Year	Total	Baslc research	Applied research	Development
1953	3,630	* \$151	'\$726	'\$2,753
1554	4,070	166	'814	'3,090
1955	4,640	169	'928	'3,523
1956	6,605	253	1,268	5,084
1957	7.731	271	1,670	5,790
1958	8,389	29.5	1,911	6,183
1959	9,618	320	1,991	7,307
1960	10,509	376	2,029	8,104
1961	10,908	395	1,977	8,537
1962	11,464	488	2,449	8,527
1963	12,630	522	2,457	9,651
1964	13,51?	- 549	2,600	10,362
1965	-14,185	592	2,658	10,934
1966	15,548	624	2,843	12,081
1967	16,385	629	2,915	12,842
1968	17.429	642	3,124	13,663
1969	18,308.	618	3,287.	14,403.
1970	18,067	602	3,427	14,038
1971	18,320	590	3,415	14,315
1972	19,552	593	3,514	15,445
1973	21,249	631	3,825	16,793
1974	22,887	699	4,288:	17,900
1975	24,187	730	4,570:	18,887
1976	26,997	819	5,112	21.066
1977	29,825	911	5,336	23,278
1978	33,304	1,035	6,300	25,969
1979	38,226	1,158	7,225	29,843
1980	44,505	1,325	8,450	34,730
1981	51,830	1,641	10,712	39,277

'Estimated by the National Science Foundation.
SOURCE: National Science Foundation.

Table B-2. Funds for basic research; applied research, and development by Industry alid selected company size-groups: 1981
[Dollars in millions]

- Not separatoly available bul inciuded in total.
sOURCE: National Science Foundation

Talite B-3. Funds for basic research, applied research, and development by industry, source of funds, and selected company size-groups: 1981
[Dollars in millions]

size of	SIC code	Federal ${ }^{\prime \prime}$				Company			
		Total	$\begin{array}{\|c\|} \text { Basic } \\ \text { research } \end{array}$	Applied research	Development	Total	$\begin{gathered} \text { Basic }^{*} \\ \text { research } \end{gathered}$	Applied research	Development
Total		\$16,468	\$328	\$2,353	\$13,787	\$35,362	\$1,313	\$8,359	\$25,690
Distribution by industry			0000	$\begin{gathered} (י) \\ 1 \\ 0 \\ (1) \end{gathered}$					399
Food andkindred products	20					713	27 :	287	
Textiles and apparel	22,23					123	1	30	92
Lumber, wood products, and furniture	24,25					167	(')	(')	95
Paper and allied products	26					562	32	160	370
Chemicals and applied products	28	383367	81		168	4.942	458	2,129	2,355
Industrial chemicals	281-82,286		(1)	134.	163	2,186	254	990	942
Drugs and medicines	283	(1)	(1)	(')	5	1,997	(')	(')	
Other'chemicals..	284-85.287-89	(')		(1)	0	759	24	279	(')
Petroleum retining \qquad Rubher products Stone, clay, and glass products	29	(')	(1)	[1]	(')	1,777	133	751	892
	30			(')	(')	616	(')16	(')	
	32	(${ }^{1}$	(')	(')	(')	411		125	270
Primary metals . Ferrous metals and products Nonferrous metals and products	33	182	0	10	172	707	46	331	330
	331-32,3398-99	(')	0	(')	(')	414	(1)	180	203
	333-36	- (1)	0	(1)	(')	293		151	126
Fabricated metals products 34		80	0	12	68	558	8	141	409
Machinery \qquad Office, computing, and	35	739,	2	224	513	6,061	126	1,028	4,907
accounting machines	357	(')	(')	(1)	(')	3,919	(${ }^{\prime}$)	(1)	3,2281,679
Other machinery, except electrical	351-56.358-59	(')	(1)	(1)	(')	2,142	(1)	(1)	
Electrical equipment \qquad Radio and TVreceiving equipment Communication equipment \qquad Electronic components \qquad Other electrical equipment \qquad	36	$\begin{array}{r} 3,962 \\ \text { (') } \\ 1,791 \\ 376 \\ (') \end{array}$	470	446	.3,470	6.502	232	1,336	4,935
	365			(1)	(')	3642,946	(11)	(1)	(1)
	366		(')		1,597				
	367		(1)			1,282	(1)	268	1.0041.499
	361-64,369		(1)	(1)	(')	1,910	(1)	(')	
Môtor vehicles and motor vëhicles tquipment. Other frans portation equipment \qquad Aircraftänd missiles \qquad	371	$\begin{array}{r} 634 \\ \left({ }^{\prime}\right) \\ 8.501 \end{array}$	$\begin{aligned} & \text { (') } \\ & \text { '1) } \\ & 59 \end{aligned}$	$\begin{gathered} (1) \\ 1 \\ 877 \end{gathered}$	$\begin{array}{r} 602 \\ 7.566 \end{array}$	4,295	21(')	(1)	$\begin{array}{r} (') \\ 48 \\ 2,557 \end{array}$
	373-75,379					4,29		(1)	
	372,376					3,201	69	574	
Prolessionalyand scientific instruments \qquad		638	5	41	592	3,047	(')	403	
	38								(')
Scientific and mechanical measuring instruments .	381:82	(')	(')	(')	(')	1,285	(')	210	
Optical ${ }_{\text {surgical, }}$ photographic.		(')	(')	(1)				(1)	
and other instruments	383-87				(')	1.762	22		(')
Other manufacturing industries	21,27,3\%1,39	0.	0	0	0	393	21	(1)	(')
Nonmanufacturing industries.	$\left.\begin{array}{\|r\|} \text { 07-17,41-67, } \\ 737,739,807,891 \end{array} \right\rvert\,$	(')	(')	523	287	1,199	\%	342	807
Distribution by size of company (based onnumber of employees)									
5,000 to 9,999		5591,25313,661	$\begin{array}{r} 1 \\ 58 \\ 225 \end{array}$	$\begin{array}{r} 97 \\ 246 \\ 1,653 \end{array}$	461.94911.783	$\begin{array}{r} 1,866 \\ 5,685 \\ 23,071 \end{array}$	117171737	$\begin{array}{r} 510 \\ 1,879 \\ 4,546 \end{array}$	1,239
10,000 to 24,999									3,635
25,000 or more									17.788

'Not separately availablo bulincluded in total.
SOURCE• National Scienco Foundation

Table B-4. Funds for basic research by industry and size of company:
1957-58, s.963-77, 1979, and 1981
[Dollars in millions]

Table B-4. Funds tor basic research by industry and size of company: ' 1957-58, 1963.77, 1979, and 1981-Continued

'Estimated by the Natlonal Science Foundation
'Nolseparatoly available butincluded in total.
'Data included in the other manulacturing industriesgroup.
*SIC codes 3398 and 3399 included in the nonforrous motals and products group for 1957.65.
'Oata not tabutated al this isvel prior to 1972.
"Data not tabulated al this level pilor to 1975.
'Included in the other etectricilequipment group.
SOURCE: National Scionce Foundation
appendix c

reproduction of covering letter
 page
 Reproduction of covering letter

For the first time since the mid-seventies national basic research spending in 1981 is not expected to show real growth, after adjusting for inflation. This primarily reflects a decline in Federal basic research support, which accounts for about 7.0 percent of total national basic research expenditures.

Industrial spendinc for basic research activities in 1981'is expected to increasc in real terms nearly 5 percent over 1980 , which would continue the trend of an $\begin{aligned} & \text { verage annual increase in }\end{aligned}$ real terms of 5 percent. betweer 1975 and 1980 . This recent growth follows a 9 year period in which basic research spending by industry fell at an average annual rate of 2 percent.

The National Science Foundation is examining the current situation and trying t, assess the role of the various sectors of the economy in supporting basic research activities. It is. wellrecognized that few. companies use the ćategory "basic. research" for internal reporting and analytical purposes. Companies more often refer to this research as exploratory or fundamental, but it is the trends in industrial spending on this "type" of research that we are interested in. .

In your capacity as a membér óf"the Foundation's Industrial Panel on Science and Technology, your assistance is requested.in improving our understanding of both the current status and the near-term future of company funds directed toward basic research. Specifically, has there been a 5 percent real growth in overall industrial básic research. spending in 1981 as had been expected?. (The economic climate during the year may have affected earlier estimates for this year's rate of growth in basic research.) Is basic research performance by companies in your industry going to show growth in 1982 (in either current or constant dollars)? What percentage change would you expect for your company and/or for the industry? What are some of the factors that have affected the planned level of an increase, decrease, or stable level? What effect, if any, will the anticipated decline in Federal support of basic research have in the planning of your company's, or industry's, basic research

- investment in 1982 or 1983?

There is a great deal of interest in university -industry cooperative research efforts. Our information indicates that the level of this type of activity has recently accelerated. Can you give us an indication of what proportion of your company R\&D expenditures, if any, currently are targeted to fund university basic research efforts? If so, do you anticipate an increase in your company funds specifically directed to support basic research activities at universities? Please comment on the reasons for any changes.

Any additional information you may have on these basic research issues, based on your experience, would be greatly appreciated. Your comments will be most helpful to us if we receive them within the next 3-4 weeks.

Thomas J. Hogan
Study Director Industry Studies Group
Division of Science
Resources Studies

other science resources publications

NSF No. Price
Science Resources Studies Highlights

R\&D Funds

"'Unversities Spent o\% of Separately
\quad Budgeted R\&D Expenditures for
Research Equipment in $1980^{\circ} \ldots \ldots \begin{array}{r}82-316\end{array}$
S/E Personnel
"Projected Etmployment Scenarios Show Possible Shortages in Some Engineering and Computer Specialties" ... 83-307
"Labor Market Slackens for New Science
and Engmeerng Graduates".
$82-330$
-Growth in Employment of Science and Engineering Doctorates Continues, Led by Computer Suentists 82-328
"Science/Engineering Doctorate Production Increases in 1981; More New Doctorates Seek Nonacademic Positions" .. 82-323
"Employment of Recent Science and Engineering (S / E) Graduates in S/E Fields Increased ${ }^{\prime}$ 82-320

Academic Science/Engin zering Linployment Increased 3\% Between 1080 and 1981"

82-312
"Labor Markets for New Science and Engineering Graduates in Private Industry 82-310
"Graduate Science/Engineering Enrollment Up 3% Between 1970 and $1980^{\circ \prime} \ldots$. . . 82-300

Detailed Statistical Tables

S/E Personnel

Characteristics of Dotioral Scientists and Engineers in the United States: 1981

82-332
U.S. Scientisth and Engineers, $1980 \ldots . .$. . 82 -314

Charac teristics of Recent Science/Engineering Graduates: 1980 82-313
Academic Science: Scientists and Engineers. January 1981 $82-305$
Atademic Science. Graduate Enrollment and Support, Fall 1980 81-330
Scientists, Engineers, and Technicians in Private Industry, 1980 81-329
Federal Scientific and Teclanical Personnel: 1976. 1977. and 1978 812309
Scientists
$1976-78$ 80-324
ReportsR\&D FuñdsFederal Funds for Research and Devel-opment, Fiscal Years 1980, 1981.and 1982, Volume XXX
Problems of Small, High-Technology Firms 81-305
S/E Personnel
Changing Employment Patterns ofScientists, Engineers, and Tech-nicians in Manufacturing Indus-tries: 1977-80
Science and Engineering Degrees: 1950-80. A Source Boo!. 82-307
Women and Minorities in Science and Engineering 82-302
Activities of Science and Engineering Faculty in Universities and 4 -Year Colleges, 1978/79 81-323
Young and Senior Science and Engi- neering Faculty, 1980 81-319
Foreign Participation in U.S. Science and En'gineering Higher Education and Labor Markets 81-316
Science and Engineering Employment: 1970-80 81-310The Stock of Science and EngineeringMaster's Degree-Holders in theUnited States81-302
Composite
Science and Engineering Personnel:
A National Overview 82-318$\$ 5.00$82-32182-331

NSF No. Price
\qquad

[^0]:

[^1]: 'Ediven Manstucld Basic Research and Productuvit) Increase in Manututuring. Amertan Economic Review, Vol. 70, No. 5. December 1980.

[^2]: ${ }^{2}$ Tom Alexander. The Right Remedy for R\&D Lag, Fortume, January 25: 1981.

[^3]: ${ }^{3}$ Although a large cutback in total R\&D budgeit wuthority for energy programs was proposed for 1982. the level actually reported for energy basic research programs remained constant in real terms between 1981 and 1982. See National Science Foundation, "Federal Basic Research Support in 1980-83 Gtows al Slower Rate Than in Previous Four Years," Science Resources Stadues Highilights (NSF. 82-325) (Washington, D.C., September 30, 1982).

[^4]: ${ }^{4}$ National bcience Foundäton, Nathotal Patterns, of Scieme and Te hmology Resources. 1982 (NBF 82319 (Wishingtun, DC Supt of Ducuments. US. Government Printing Office 1982]

[^5]: ' R.I.I. Center Propuesed for Industral Research,' New York Times, Lanuary 27. 1982.

[^6]: 'National Science Foundation. Notional Patterns of Sctence and Technelogy Resources, 1982, op. cit.

[^7]: ${ }^{2}$ National Science Foundation. Support of Baste Research by Inhastry. Report prepared for NSF by Howard K Nason. Industral Research Institute Research Corporation and Joseph A. Steger and George I: Mamaer, Renssedaer Pulytechaic Instrtute under Gant NSF-C70-21517 (Washangton, D (. 19781

[^8]: ${ }^{\text {P }}$ Although the company R\&D officials interviewed in this study mentioned increased government regulation as an important factor leading their firms to cut back expenditures on basic research. there is not complete agreement on the validity of this assertion. Frank Healy in a recent article entitled "Industry Needs for Basic Research" (Research Management, November 1978) pointed put that the deemphasis un basu tesearh hlargely towh plate dur ing the situes befure the evistence of many govern ment regulatury agenues Thus, he concluded that the increase in government regulations was not a signifiant faclor in the curtailment of industry's basic research programs

[^9]: ${ }^{4}$ Busu Research Outlays After years of Neglect, Wall Street Jourmal. September 3. 1981.
 'information trom interviews with company R\&D offacts contained in Nattonal Stience Foundation, Support of Bash Research by Industry, op. cit.

